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Colored Noise in Activated Rate Processes 

M. M. Klosek-Dygas, 1 B. J. Matkowsky, 2 and Z. Schuss  3 
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We consider bistable systems driven by stationary wideband Gaussian colored 
noise. We construct uniform asymptotic expansions of the stationary probability 
density function and of the activation rate, for small intensity e and short 
correlation time ~ of the noise~ We find that for different values of the total 
power output e/r of the noise, different terms in the asymptotic expansions 
become dominant. For r ~ e  we recover previously derived results, while for 

= O(e) and e 4 z new results are obtained. 

KEY WORDS: Colored noise; bistable dynamics; singular perturbation; first 
passage time; activated rate processes. 

1. I N T R O D U C T I O N  

The calculation of the activation rate of bistable dynamical systems driven 
by colored noise has been the focus of attention for a number of years (see 
refs. 1-15 and references therein). Even the simplest problem of one- 
dimensional dynamics forced by small additive Gaussian noise with 
very small correlation time led to unexpected difficulties. A number of 
theories have been proposed, leading to different and often conflicting 
results. (1-~'6'8-1~'13"14) The ensuing confusion and controversy are due to the 
fact that the expansions obtained depend on two parameters, the noise 
intensity, and the correlation time of the noise r, in a nonuniform manner. 
The various analyses proposed were mostly based on the assumption that 
the expansion is regular in the small parameter r, uniformly with respect to 
e. Thus, first ~ was used in a regular expansion for various non-Markovian 
Fokker-Planck-type equations (NMFPTE) for the probability density 
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function (PDF)  of the dynamics, and then the result was expanded for 
small e. Kramers-Moyal- type expansions of the P D F  were truncated after 
the second term to obtain a one-dimensional Fokker-Planck equation 
(FPE). Since the diffusion coefficients obtained this way were not always 
positive, they were replaced in an adhoc manner by effective diffusion 
coefficients to ensure positivity. The various diffusion approximations to 
the non-Markovian dynamics were then used for the calculation of the 
activation rate and the mean first passage time (MFPT)  from one stable 
state to the other. 

The leading-order approximation for the M F P T  for small ~ is 
obviously the M F P T  of the dynamics with the colored noise replaced by its 
small-~ limit, the white noise. On this point all theories agree and all 
reproduce the Smoluchowski-Kramers result. (~7) The differences appear in 
the first asymptotic correction to this result. Such a correction expresses the 
influence of the finite correlation time on the activation rate or on the 
MFPT.  The different approximations adopted for the calculation of the 
first asymptotic correction to the M F P T  raise the following questions. 
First, is the approximation of the M F P T  of a non-Markovian process by 
that of some approximating diffusion' process correct up to second order 
in a small-z asymptotic approximation? Further, is this approximation 
uniform with respect to other parameters of the problem, such as the inten- 
sity of the noise? Second, the calculation of the M F P T  from a truncated 
master equation has been criticized in the literature, ~24'26-28) since the tails 
of the P DF  are in general not well approximated by the tails of the P D F  of 
diffusion approximations obtained from such procedures, and the trans- 
ition from one stable state to another is an event in the tail of the PDF. In 
view of this fact, is the resulting M F P T  sufficiently well approximated by 
that obtained from the diffusion approximation, to second order in a 
small-z expansion? Third, which of the different expansions for small z is 
correct (see ref. 10 and references therein), and which, if any, is uniform 
with respect to the noise intensity e? 

Here we present a systematic theory, based on singular perturbation 
methods (2~ and on clearly stated assumptions, for the calculation of the 
P D F  and the M F P T  as functions of the two small parameters e and z. We 
derive a uniform expansion for the PDF  and the M F P T  for all sufficiently 
small values of e and z. Our point of departure is the formulation of the 
problem as that of a two-dimensional Markov process whose components 
are the state variable and the driving noise. The P D F  of the state variable 
is found as the marginal PDF  of the two-dimensional P D F  obtained from 
an asymptotic expansion of the solution of a two-dimensional Fokker-  
Planck equation. We construct this solution in two steps. First we consider 
the limit z ~ 1, followed by e ~ 1, and then the reverse ordering. We show 
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that both cases lead to the same expansion. Therefore the expansion is 
uniform. We calculate the MFPT as a solution of a partial differential 
equation (22-25) with both orderings of the parameters. 

We note that there are at least three different situations to be con- 
sidered, depending on the total power output 8/v of the noise for T, ~ ,~ 1: 
(i) e/~ ,~ 1, (ii) ~/~ = O(1), and (iii) ~/~ >> 1. It is not a priori obvious that the 
same results will be valid in all three cases. We present results that are valid 
in all three cases and reduce to each other in the appropriate limits. We 
show that the expansion in each ordering of the limits is a rearrangement 
of the other, and we show that different terms in the expansion become 
dominant in different parameter ranges. Thus, we find that the expansions 
in refs. 1-15 are valid only in the restricted range r ~ ~, but not otherwise. 
We note that the O(r) correction in the exponent of the expression for the 
MFPT in ref. 3 is incorrect, although a correction of this order of 
magnitude appears in the PDF. For other ranges of the parameters, we 
find additional terms that may dominate previously computed terms. 

2. S T A T E M E N T  OF T H E  P R O B L E M  A N D  A 
S M A L L - ~  E X P A N S I O N  

One-dimensional bistable dynamics forced by small, wideband, 
colored noise ~(t) can be described by the stochastic differential equation 

~(t) = - U ' ( x ( t ) )  + ~(t) (2.1) 

where U(x) is a bistable potential, e.g., U(x)= x4/4-x2/2. Denoting the 
bandwidth of the noise ~(t) by ~ (c~ = I/r) and its intensity (spectral height) 
by ~, we can define ~(t) by the stochastic differential equation 

~(t) = - ~ ( t )  + (2e) m c~(t) (2.2) 

where v~(t) is standard Gaussian white noise. The autocorrelation functions 
of ~(t) and ~(t) are given by 

( ~(t) ;v(s) ) = 6 ( t - s )  (2.3) 

and 

(~(t) ~(s)) =ca  e x p ( - a  ] t - s ] )  (2.4) 

respectively. We note that the process x(t) is not Markovian; however, the 
pair (x(t), ~(t)) is Markovian. In the limit c~--* ~ ,  the colored noise ~(t) 
becomes white noise of intensity e and (2.l) becomes the Smoluchowski 
equation describing the motion of an overdamped particle in a potential 
well. In this limit the process x(t) becomes a Markovian diffusion process 



1 31 2 Ktosek-Dygas e t  al. 

and its evolution can be described by a Fokker-Planck-Smoluchowski 
equation. In this case the calculation of the MFPT over the potential 
barrier follows the standard methods for Markovian diffusions. ~21-24) The 
result is the well-known Kramers formula ~17) 

7~ 
T o = e ~ / '  (2.5) 

(DAfD C 

where A U is the height of the potential barrier, and coA and co c are the 
frequencies of vibration at the bottom and at the top of the potential well, 
respectively. Note that Too in (2.5) is the MFPT to the top of the barrier, 
while the mean time to cross over is twice that number, since trajeetories 
that reach the top cross over or return with equal probabilities. r 

Defining y =  - U ' ( x ) +  r we rewrite the system (2.1), (2.2) in the 
form 

Yc(t) = y( t )  (2.6) 

2(t) = - [ U ' ( x )  + ~3 y(t)  - ~U'(x)  + (2e) 1/2 c~(t) (2.7) 

Now the pair (x(t),  y ( t ) )  is a two-dimensional diffusion process whose joint 
PDF satisfies the FPE 

P,=  - Y P x +  { [ ( U " ( x ) + ~ ) Y + ~ U ' ( x ) ] P } y + e ~ 2 P y y  (2.8) 

The two-dimensional dynamical system (2.6), (2.7) has, in the absence of 
noise [-i.e., for ~ = 0 in (2.7)], a stable equilibrium point (an attractor) at 

x = XA, y = 0 (2.9) 

and an unstable equilibrium point (a saddle point) at 

X = X c ,  y = 0  (2.10) 

(see Fig. 1). The domain of attraction D of the stable equilibrium point is 
bounded by a separatrix F. The curve F in the (x, y) plane consists of the 
two tajectories of (2.6), (2.7) (with e = 0) that converge to the saddle point. 

The MFPT for the system (2.1), (2.2) is the mean time for the pair 
(x(t), y( t ) )  to hit F for the first time. Note that the MFPT is not the mean 
time for x(t)  to hit Xc for the first time, since once the trajectory of (2.6), 
(2.7) crosses F, it drifts deterministically across the line x = x c  in a 
relatively short time [independent of the noise lb(t)]. 

Next we discuss the various methods proposed for the calculation of 
the MFPT. In ref. 3 (and refs. 4, 5, 14, and 15 therein) and ref. 10 (and 
ref. 5 therein) a Fokker-Planck-like equation for the PDF of x( t )  is 
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constructed. For large c~, various procedures for the derivation of an 
approximate Fokker-Planck equation for the PDF are adopted. (11'13) The 
resulting FPE has the form 

p,= [ U'(x) p]x + [D(x, t) p]xx (2.11) 

where D(x, t) is a state-dependent diffusion coefficient. Various expressions 
for the stationary coefficient D(x)=lim,~ooD(x,t) were given. (1~ 
The MFPT for the system (2.1), (2.2) is identified with that of the one- 

U(x) 

-50 ~ 2-" X -2 X A XC=0 
(a) 

Fig. 1. 

Y 

5o 

-50 ~ -4 4 X 
(b) 

(a) The potential U(x)= x4/4- x2/2. (b) Separatrices for the potential x4/4- x2/2 for 
= 1, 10, and 100, respectively. 



1 31 4 Kiosek- Dygas et  al.  

dimensional state-dependent diffusion process described by (2.11). Such a 
diffusion process is the solution of the It6 stochastic equation (21) 

2(t) = - U ' ( x )  + [2D(x) ] m v~(t) (2.12) 

This identification is not obvious and certainly requires some clarification. 
It should be noted that passage out of the domain of attraction D may 
occur on one hand prior to hitting the line x = x c, and on the other hand a 
transition over this line may result in an immediate return into D if at the 
time of such a transition the value of ~(t) is large and negative. 

Next we examine this procedure by constructing an asymptotic expan- 
sion of the stationary PDF of x(t) in the limit e ~ oo directly from the 
stationary two-dimensional FPE (2.8). First we change variables in (2.8) by 
setting 

y=~t/2z (2.13) 

and rewrite the stationary FPE in the form 

~l-~p~ + (zp)z] + ~,/2[_zpx + U'(x) pz] + u"(x)(zp)z 

=- ~Lop + ~1/2L1 p + Lzp  = 0 (2.14) 

The joint stationary PDF of (x, y) in the limit ~ oo can be easily 
obtained by expanding the solution of the stationary FPE (2.14) in an 
asymptotic series in powers of c~-1/2. The leading term and the first correc- 
tion in this expansion are given by ~3~ 

L 1 p,,~C l + U " ( x ) \ 2 ~  2eJ ~ . jexp - e 

where C is a normalization constant. A one-dimensional diffusion 
approximation to the non-Markovian dynamics x(t) for 1/ct,~ 1 (actually, 
for 1/0~ ,~ e) is obtained as follows. First, the marginal stationary PDF of 
x(t) is obtained from (2.15) by integration with respect to z as 

p(x) ,~ D(x) exp[ - U(x)/e] (2.16) 

where 

1 [ [u,(x)v l D(x) = 1 +-~ U"(x) ~ j (2.17) 

Next, the approximating diffusion process, whose stationary PDF is given 
by (2.16), is defined by the It6 stochastic differential equation 

2(0  = m(x(t))  + [2ecr(x(t))] ,/2 ~(t) (2.18) 

with 
re(x) = - U'(x)/D(x) (2.19) 
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and 
a(x) = 1/D(x) (2.20) 

Then, using standard methods, ~17-~9) the MFPT T of the process defined in 
(2.18) is found as 

T =  Y2 exp(d U/s) (2.21) 

where the attempt frequency s'-2 is given by 

f2 = 72 -m ' (Xc)  m'(xA) r(xA)j  (2.22) 

For the potential U(x)= x4/4-x2/2, (2.21) and (2.22) give 

T ~  T~[1 + 3/(2a) + . .-]  (2.23) 

which agrees with refs. 4, 9b, 10, and 11. 
The validity of such a procedure for calculating the MFPT for the 

non-Markovian process x(t) is questionable, in view of the criticism of the 
diffusion approximation to the master equation. r In the next section 
we calculate the MFPT of the two-dimensional Markov process (x(t), y(t)) 
and show that (2.23) is a valid approximation if T = 1/ct ~ e ,8 1. 

The large-~ expansion for the MFPT of the two-dimensional process 
(x, y) to the separatrix F is obtained as follows. We denote the MFPT, 
given the initial state (x, y), by T(x, y) and recall ~21) that it satisfies the 
boundary value problem 

ea2Tyy-{[ot+U"(x)]y+aU'(x)} Ty+yTx= -1  in D (2.24) 
and 

T(x, y) = 0  on F (2.25) 

Then we construct an asymptotic expansion of T(x, y) in powers of 1/aJ 3~ 
The MFPT is T(xA, 0), which is given by 

T(xA, 0) = T~o 1 + (~o ] + 0 2) + O ~ (2.26) 

where T~o is given in (2.5). It follows that the expression for the MFPT 
containing the first-order correction to the white noise result for the 
potential 

U(x) = x4/4 - x2/2 (2.27) 

is given by 

T ~  To(xA)[1 + 3/(2~)] (2.28) 

Formula (2.28) is valid for r =  1/e <~e,~ 1. However, this formula is not 
uniformly valid for all z. Indeed, for e ,~ 1/e = z ,~ 1, other terms enter the 
expansion, and in fact dominate the O(i/~) term aboveJ 12"~6) 
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3. A U N I F O R M  E X P A N S I O N  OF T H E  M F P T  

The asymptotic expansion of the MFPT for small ~ was given in 
refs. 16 and 30. Following ref. 30, we present two expansions of T. First we 
construct an expansion by considering the limits e ~ 1/e ~ 1, and then we 
consider the limits 1/e ~ e ~ 1. We show that the first expansion agrees with 
the second; thus, the expansion is uniform for e ~ 1 and ~ >> 1. 

In the first case (e ~ 1/e ~ 1), we construct an asymptotic solution to 
the stationary FPE (2.8) in the WKB form 

p = K(x, y, ~, ~ )exp[ -0 (x ,  y, ~)/~] (3.1) 

where K(x, y, ~, ~) ~ K~ y, ~) + eK'(x, y, ~) + .. . .  Inserting (3.1) into 
(2.8), we obtain the eikonal equation 

Y O x - -  [(UCt-[-o~)Y -[-~U'' l  Oy 2 2__ + e 0y - 0 (3.2) 

The leading term K ~ in the expansion of the preexponential factor K with 
respect to e satisfies the transport equation 

yK ~  { [y(e  + U"(x)) + c~U'(x)] K~ + 0c2[2Ky~ + K~ -- 0 (3.3) 

For large ~ we expand the solution of (3.2) in powers of 1/c~. We note that 
such an expansion is assumed only for values of x and y that are O(1) 
relative to the expansion parameter e. Thus, we assume 

0 ~ 00 "[- 01/Or" nt" 02/0~2 -Jc" "'" 

We obtain 

(3.4) 

(3.5) 

(3.6) 

00 = u(x) 
y2 

0~ =5-+ [U'(x)322 

y2U"(x) 1 fx 02 = 2 ~ [U'(s)]  2 U"(s) ds (3.7) 
A 

03 = - U ' ( x )  -t 4 12 [U'(x)]3 (3.8) 

Y~ y3 {3u"(x) U"(x)+~ U'(x) 04 = ~-~ uIV(x) ~- ~ uIV(x)} 

+ ~--~ {3U'(x) u"(x) cr"(x)+ [U'(x)] ~ u~V(x)} 

-IxX~ (U'(x))~ (u"'(x))2 dx (3.9) 
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and so on. Similarly, we expand the solution of (3.3) as 

K ~  Ko +KI +K2 + ... 
7 

and obtain 

/~o = 1 (3.10) 

/Q~_ 3 U'(x)  (3.11) 
2 

y 5 5 
K~2= - 2  U ' ( x ) - -~  U'(x) U'"(x)+-~ [U"(x)]  2 (3.12) 

and so on. 
To find the MFPT we recall the formula (29) 

T= Hc 1/2 KAe(~C-~A)/e 
ZC HA Kc2p (1 + O(e)) (3.13) 

where H,. are the Hessians of ~b at xi, 2p is the unique positive eigenvalue of 
the linearized system (2.6), (2.7) about the saddle point, and K ~ and ~bi are 
the values of K ~ and ~b at the point (x~,0) ( i=A, C). Using (3.1) with 
(3.4)-(3.12) in (3.13), we find 

r~ (1 2 4 2 1/2 3092/2a 5o~]/8c~ 2 + O(e) - 2coU7 + a)c/a ) 1 + + 
T ~ - -  

(DA(2.) C (1 + 2(.D2/~ q- (d)4/0~2) 1/2 1 - -  3co~/2~ + 5o94/8~ 2 + O ( e )  

} 
(U') 2 U" 1 exc dx 1 dx+-~JxA (U') 3 (U")  2 

(3.14) 

We note that (3.14) agrees with the expansion of (2.21)-(2.22) for large ~, 
and also with the expansion (2.26). We observe that the first two terms in 
zl~b were also obtained in refs. 31, 32, and all three terms in dq~ were 
obtained in ref. 33. However, the preexponential factor in (3.14) was not 
obtained. 

Next we consider the second case, 1/~ ~ e,~ 1. We construct a WKB 
solution to (2.8) in the form 

where •j are functions of the variables x and v = x - y/u. We find that 

822/54/5-6-14 
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where 

and 

Finally, 

where 

and 

with 

and 

( X  - -  0) 2 
Oo = (3.16) 

2e 

~1 :--1 [U' (x) (x-v)+ U(v)] (3.17) 

' f; 02 = ~  [ Ut(X)- g t ( u ) ]  2 -  F(t, v) dt 

1 ~ 1 3 + - U'(v) j, G(t, v)dt+-~ [ -U ' (o) ]  2 --'~ un(v) (3.18) 

u " ( t ) -  u"(v) 
F(t, v)= (3.19) 

t - - v  

u'(t)-  U'(o) G(t, v)= (3.20) 
t - - u  

t~3 = -- f :  U'(t) ~2,v(t, v )dr -  ;v ~ B(t,t_ vV) dt + K(v) (3.21) 

B(t, v)= U'(t) ~2,,(t, v)-e~z,v( t ,  v)+2e~l,v( t, v) ~2,v(t, v) (3.22) 

K(v) = K~ + Ka(v) + eK2(v) (3.23) 

Xo(O) = - 2  [u' ( t ) ]  2 u ' ( t )  dt 
A 

5 1 Kl(v) =-~ U'(v) U"(v) +-~ [U"(v)] 2 

(3.24) 

(3.25) 

5 Kdv) = - ~  UiV(v) (3.26) 

The expansions (3.1) and (3.15) can be compared by 

E~ ~ ( ~ ) I { , E  ~ 1 (1)1 } I + - K I +  K2+O exp - - -  ~bo+ r  r  

{[ ' 5 (1)]} =exp - e~ 'O+Ol+-q ' 2+  0 3 + 0  (3.27) 
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In (3.27) terms up to orders O(1/e~ 2) and 0(1/~ 2) have been kept. Finally, 
to calculate the MFPT,  we use (3.15)-(3.26) in (3.13). We obtain, as in 
(2.21), 

T =  Y2e ~U/~ (3.28) 

with 

a = ~ {1 + (1/c0[-2~o~-+ o(~)3 + o(1/~2)} 1/2 

Ti + o(e) ]  + o(1/ 2) } ',2 

where 
(3.29) 

1 fx~c 3 
g2o(Ct, e ) = e x  p - ~ [U ' ( t ) ]  2 U"(t) dt+~-~(o;]+OJ2c) 

A 

+ ~- j  ( co4-  e)~) + O (3.30) 

For 1 /c~e ,  (3.28)-(3.30) reduce to (2.26), while for 1/c~>e, 
(3.28)-(3.30) reduce to (3.14). We observe that in the latter case, the term 
O(1/ee 2) in (3.30) may in fact dominate the term which is O(i/cQ. In a 
similar manner (3.14) considered for 1 /c~e ,  can be shown to reduce to 
(3.28)-(3.30). Thus each expansion can be obtained from the other by 
appropriately rearranging terms. Thus, (3.28).(3.30) and (3.14) are uniform 
expansions of the M F P T  for all e ~ 1 and e >> 1, while (2.21)-(2.22) and 
(2.26), which were obtained in refs. 4, 9b, 10, and 11, are not uniform 
throughout this range, but rather are only valid for 1/c~ ~ e ~ 1. The results 
(2.21)-(2.22) and (2.26) diverge significantly from our uniform results 
(3.14) and (3.28) when 1/e exceeds e, and this divergence increases with 1/e. 
This prediction is confirmed by recent numerical simulations. 134~ The 
dependence of the M F P T  on 1/ec~ 2 is exponential and in general cannot be 
expressed as a preexponentia! factor. If e=O(1/cQ, then O(1/e) and 
O(1/ec~ 2) terms are comparable and both must be retained as preexponen- 
tial factors in (3.28)-(3.30). If, however, O(1/e 2) ~ ~ ~ O(1/c0, the O(1/ea 2) 
term dominates the O(1/c0 term, though it can still be expressed as a 
preexponential factor. Finally, if ~ = O(1/e2), the O(1/ee 2) term dominates 
all other corrections to the Kramers-Smoluchowski formula (2.5). It must 
be retained in the exponent, and cannot be expressed as a preexponential 
factor. 
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